Civil Aviation Order 100.5 (General requirements in respect of maintenance of Australian aircraft) 2011 (as amended)

Draft compilation for reference purposes only

This compilation is provided for guidance and should be read in conjunction with draft Civil Aviation Order 100.5 Amendment Instrument 2017 (No. 1)

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A Name of instrument</td>
<td>2</td>
</tr>
<tr>
<td>1B Commencement</td>
<td>2</td>
</tr>
<tr>
<td>1 Application</td>
<td>2</td>
</tr>
<tr>
<td>2 Interpretation</td>
<td>3</td>
</tr>
<tr>
<td>2A Certain equipment not an aircraft component</td>
<td>4</td>
</tr>
<tr>
<td>3 Aircraft log books</td>
<td>4</td>
</tr>
<tr>
<td>4 Alternative to aircraft log book</td>
<td>5</td>
</tr>
<tr>
<td>5 Retention of aircraft maintenance records</td>
<td>6</td>
</tr>
<tr>
<td>6 Maintenance releases for class A aircraft</td>
<td>7</td>
</tr>
<tr>
<td>7 Maintenance releases for class B aircraft</td>
<td>8</td>
</tr>
<tr>
<td>7A Structural maintenance of composite structure aircraft</td>
<td>9</td>
</tr>
<tr>
<td>8 Inadequate maintenance schedules</td>
<td>10</td>
</tr>
<tr>
<td>9 Mandatory maintenance requirements</td>
<td>11</td>
</tr>
<tr>
<td>9A Electronic navigational databases</td>
<td>12</td>
</tr>
<tr>
<td>11 Additional maintenance requirements</td>
<td>12</td>
</tr>
<tr>
<td>14 Approval of certain maintenance data</td>
<td>13</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>15</td>
</tr>
<tr>
<td>Additional maintenance requirements</td>
<td>15</td>
</tr>
<tr>
<td>1 Definitions</td>
<td>15</td>
</tr>
<tr>
<td>2 Balloon etc. intervals</td>
<td>15</td>
</tr>
<tr>
<td>3 Pitot-static systems</td>
<td>15</td>
</tr>
<tr>
<td>4 Testing pressure altimeters and air data computers</td>
<td>15</td>
</tr>
<tr>
<td>5 Airspeed indicator</td>
<td>16</td>
</tr>
<tr>
<td>6 Fuel quantity gauges</td>
<td>17</td>
</tr>
<tr>
<td>7 Propeller systems</td>
<td>18</td>
</tr>
<tr>
<td>8 Feathering propellers — functional check</td>
<td>18</td>
</tr>
<tr>
<td>9 Cockpit voice recording systems</td>
<td>19</td>
</tr>
<tr>
<td>10 Emergency exits</td>
<td>20</td>
</tr>
<tr>
<td>11 Life rafts, life jackets and inflatable flotation devices</td>
<td>20</td>
</tr>
<tr>
<td>13 Electrical hoist assembly — earth bonding testing</td>
<td>21</td>
</tr>
<tr>
<td>14 Periodic checking and testing of ATC transponders</td>
<td>22</td>
</tr>
</tbody>
</table>
15 Compressed gas cylinders ..23
(c) a standard approved by CASA ..25
17 Fire protection in toilet areas ..25
18 ADF systems — periodic checking26
19 VOR systems — periodic checking26
20 VOR in I.F.R. — periodic checking27
21 Glidescope in I.F.R. — periodic checking28
Attachment 1 to Appendix 1 ..29
Clause 1 Pitot-static system test ..29
Clause 2 Tests for altimeters and air data computers30
Clause 3 Automatic pressure altitude encoders and ATC transponder system integration test ...34
Appendix 2 .. 35
Approved single engine turbine-powered aeroplanes (ASETPA)35
1 Aeroplane .. 35
2 Engine ... 35
3 Engine control system ... 35
4 Engine ignition system ... 35
5 Engine fire warning system ... 36
6 Engine monitoring system ... 36
7 Engine oil metal contamination detection system 36
8 Electrical power sources .. 36
9 Battery capacity ... 36
10 Electrical load shedding ... 37
11 Flight instrument systems ... 37
12 Autopilot system ... 37
13 Global Navigation Satellite System (GNSS) 38
14 Radar altimeter ... 38
15 Weather radar ... 38
16 Passenger seats ... 38
1 Training .. 38
2 Maintenance ... 38

1A Name of instrument
This instrument is Civil Aviation Order 100.5 (General requirements in respect of maintenance of Australian aircraft) 2011.

1B Commencement
This Order commences on gazettal.

1 Application
1.1 Subject to paragraph 1.2, this section applies to all Australian aircraft in respect of which an Australian certificate of airworthiness is in force, other than an aircraft to which Part 42 of the Civil Aviation Safety Regulations 1998 applies
1.2 CASA may, in writing, determine that this section, or a specified provision of this section, does not apply to an Australian aircraft specified in the determination.
1.3 Before making a determination, CASA must take into account any relevant considerations relating to the interests of safety.
2 Interpretation

2.1 In this section, unless the contrary intention appears:

aerial application operation or *application operation* has the same meaning as in regulation 137.010 of CASR 1998.

AMD means approved maintenance data, which has the same meaning as in regulation 2A of CAR 1988.

approved design has the same meaning as in Part 42 of CASR 1998.

approved maintenance program has the same meaning as in Part 42 of CASR 1998.

CAR 1988 means the *Civil Aviation Regulations 1988*.

CAR 30 maintenance organisation means the holder of a certificate of approval.

certificate of approval has the same meaning as in regulation 2 of CAR 1988.

CASA maintenance schedule means Schedule 5 of CAR 1988.

CASR 1998 means the *Civil Aviation Safety Regulations 1998*.

CAO means Civil Aviation Order.

civil aviation legislation means the *Civil Aviation Act 1988* (the *Act*), and any legislative instrument made under, or for the purposes of, the Act, including regulations, CAOs, Manuals of Standards and other instruments.

covered by a maintenance program, for an aircraft, means an aircraft covered by an approved SOM or maintenance schedule under Part 4A of CAR 1988 (Part 4A) that incorporates the additional maintenance requirements set out in Appendix 1.

DOT means the United States Department of Transportation.

MSG means the maintenance methodology, standards and principles documented and published by the Air Transport Association for America for the maintenance of transport category aircraft.

NAA means national aviation authority.

approved SOM means a system of maintenance approved under regulation 42M of CAR 1988.

STC means supplemental type certificate.

TAC means type acceptance certificate.

TC means type certificate.

time-in-service, in relation to an aircraft, means the time from when the aircraft leaves the ground on a flight until it touches the ground for the purpose of landing at the end of the flight.

time-in-service, in relation to an aircraft component, means the time during which a component is installed in an aircraft, being the time commencing from the moment the aircraft leaves the ground on a flight and ending when it touches the ground for the purpose of landing at the end of the flight.

work documentation package means a record of the stages and details of maintenance that is carried out on an aircraft, aircraft components or aircraft materials made by a person performing the maintenance
2A Certain equipment not an aircraft component

2A.1 For a regulation mentioned in paragraph 2A.5, a headset used in an aircraft is not an aircraft component within the meaning of subregulation 2 (1) of CAR 1988 if the headset:

(a) is not mentioned in the AMD for the aircraft; and

(b) either:

(i) is maintained in accordance with the service instructions issued by the manufacturer of the headset (the service instructions); or

(ii) if there are no service instructions — is at least subject to a visual check by the pilot in command before a flight in which the headset is used.

Note 1 See also paragraph 233 (1) (a) and subregulation 242 (1) of CAR 1988 under which the pilot in command of an aircraft has certain responsibilities regarding instruments, equipment, and radio apparatus.

Note 2 Paragraph 2A.1 replaces instrument CASA 307/03 which is not in force.

2A.2 For a regulation mentioned in paragraph 2A.5, night vision goggles (NVG) used in a helicopter is not an aircraft component within the meaning of subregulation 2 (1) of CAR 1988 if the NVG is maintained:

(a) in accordance with approved maintenance data for the NVG within the meaning of regulation 2A of CAR 1988; and

(b) by an organisation mentioned in paragraph 2A.3.

Note See, for example, CAO 82.6.

Note Paragraph 2A.2 replaces instrument CASA 347/07 which is not in force.

2A.3 For subparagraph 2A.2 (b), maintenance of NVG must be carried out by an organisation that:

(a) complies with regulation 30 of CAR 1988 or Part 145 of CASR 1998 as if the regulation or the Part applied to the organisation for the maintenance of NVG and its related equipment; and

(b) is endorsed by the manufacturer of the NVG as an appropriate organisation to carry out maintenance on the NVG.

2A.4 To avoid doubt, for paragraph 2A.2, maintenance includes the routine scheduled servicing of NVG.

2A.5 For paragraphs 2A.1 and 2A.2, the regulations are as mentioned in Table 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>CAR 1988</th>
<th>Item</th>
<th>CAR 1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>6</td>
<td>42W</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>7</td>
<td>42WA</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>8</td>
<td>42ZA</td>
</tr>
<tr>
<td>4</td>
<td>42A</td>
<td>9</td>
<td>42ZP</td>
</tr>
<tr>
<td>5</td>
<td>42L</td>
<td>10</td>
<td>305</td>
</tr>
</tbody>
</table>

Note The following regulations in CAR 1988 are not affected by subsection 2A: r. 47 (maintenance release endorsement); r. 52 (defect reporting); r. 52B (defective component preservation); r. 53 (defect investigation); and r. 242 (testing of radio apparatus).

3 Aircraft log books

3.1 For the purposes of subregulation 50A (2) of CAR, CASA’s instructions in relation to aircraft log books are set out in paragraphs 3.2 and 3.3.
3.2 An aircraft log book must:

(a) identify the aircraft and the type and model of engine and propeller fitted to the aircraft and must state whether the aircraft is equipped for I.F.R. operations, V.F.R. (Day) operations or V.F.R. (Night) operations; and

(b) identify the aircraft’s maintenance program (including details of maintenance release inspections); and

(c) identify any approved variations or exemptions to the aircraft’s maintenance schedules; and

(d) have provision for the recording and certification of maintenance carried out on the aircraft; and

(e) have provision for the recording and certification of maintenance carried out on the aircraft’s engine and, if applicable, the propeller; and

(f) contain a record of when the engine and, if applicable, the propeller, was installed or removed and a record of the date and aircraft time in service of the installation or removal; and

(g) contain a record of when any time-lifed components were installed or removed, including a record of the date and aircraft time in service of the installation or removal; and

(h) contain a record of compliance with all applicable airworthiness directives, including a record of the date and time in service of the compliance; and

(i) contain a summary of any changes to the empty weight of the aircraft; and

(j) have all log book sections incorporating certification pages sequentially numbered, and bound or held together in a way that protects each page from inadvertent misplacement, loss or removal.

3.3 An aircraft’s log books, and documents referred to in an aircraft’s log book, must be made available to CASA and to persons engaged in maintenance on the aircraft.

Note If an aircraft log book fully complies with the requirements of paragraph 3.2, there is no requirement that it be submitted to CASA for approval. It must, however, under paragraph 3.3, be made available to CASA on request. It must also be made available to each person engaged in maintenance on the aircraft. If a document does not fully comply with the requirements of paragraphs 3.2 and 3.3, subsection 4 may apply to it.

4 Alternative to aircraft log book

4.1 The use, in relation to an Australian aircraft, of an alternative to an aircraft log book (alternative aircraft log) is approved, subject to the following conditions:

(a) the alternative aircraft log must comply with the conditions in paragraphs 4.2 and 4.3;

(b) the use must be the subject of a written confirmation of approval from CASA.

4.2 An alternative aircraft log must comply with the instructions set out in paragraph 3.2, including subparagraph 3.2 (j) but only as if subparagraph 3.2 (j) reads as follows:

(j) have all parts of the aircraft log book which incorporate certification pages or certification records managed in accordance with a secure system (which may be or include an electronic system), which sequentially or chronologically numbers or orders each page, and protects it from the following:

(i) any inadvertent misplacement, loss, or removal;
(ii) any inadvertent deletion, amendment, alteration or erasure;
(iii) any deletion, amendment, alteration or erasure:
 (A) that is not immediately visible on the face of the document; or
 (B) for an electronic system — that cannot be traced through the system to identify the user who made the deletion, amendment, alteration or erasure;
(iv) any deletion, amendment, alteration or erasure that renders the previous version illegible, or inaccessible in the system.

Note Under subregulation 50B (5) of CAR, it is a strict liability offence if a person engages in conduct that results in the alteration of any entry in an alternative to an aircraft log book (including electronic versions) if: (a) the alteration is not a single line through the words to be struck out; and (b) the words struck out do not remain visible.

4.3 Following written confirmation of approval from CASA, an approved alternative aircraft log must be made available in an easily accessible and usable form:
 (a) to each person engaged in maintenance on the aircraft; and
 (b) to CASA at any time on request.

4.4 In the application of paragraph 3.2 to an alternative aircraft log (including subparagraph 3.2 (j) as amended by paragraph 4.2), references in the paragraph to an aircraft log book are to be read as references to an alternative aircraft log.

4.5 In this subsection, references to an alternative aircraft log include references to an alternative section of an aircraft log book.

5 Retention of aircraft maintenance records

5.1 For the purposes of subregulation 50C (1) of CAR, CASA directs that aircraft maintenance records must be retained in accordance with paragraph 5.2.

5.2 Aircraft maintenance records must be retained for the following periods:
 (a) in the case of a log book for an aircraft or a maintenance release — at all times until the end of a period of 1 year after the aircraft has been permanently removed from the Australian Civil Aircraft Register;
 (b) in the case of a log book for an aircraft engine or propeller — at all times until the end of a period of 1 year after the component has been permanently withdrawn from use;
 (c) in the case of a Major Assembly History Card and Component History Card as the case requires:
 (i) from the date of the last overhaul of a component to which the Card relates until certification is made for the next overhaul; or
 (ii) for a period of 1 year after the component has been permanently withdrawn from use;
 (d) in the case of maintenance records containing data relating to a modification or repair — at all times until the end of a period of 1 year after the aircraft has been permanently removed from the Australian Civil Aircraft Register, unless the data is on public record or is otherwise publicly available;
 (e) where certifications are made on documents other than aircraft log books:
 (i) in the case of the record for certification for completion of a mandatory inspection, test or check which is required to be repeated at specified intervals — until a subsequent certification has been made for the completion of the inspection; and
(ii) in the case of the record for certification for completion of a mandatory inspection, test or check which is not required to be repeated and for completion of a modification, major repair or the installation of a major aircraft component — a period of 1 year commencing immediately after the certification;

(f) in the case of a copy of a maintenance release held by the authorised person who issued the maintenance release — a period of 1 year commencing immediately after the date of issue.

5.2A In the case of a work documentation package being cited in a final certification in lieu of providing some or all of the detail required by paragraph 4.4 of Part 4 of Schedule 6 to CAR 1988 — a copy of the relevant sections of the work documentation package must be retained with the aircraft log book at all times until the end of a period of 1 year after the aircraft has been permanently removed from the Australian Civil Aircraft Register.

5.3 If an Australian aircraft is exported from Australia the aircraft’s maintenance records must accompany the aircraft.

5A Maintenance records created by a CAR 30 maintenance organisation for maintenance of aircraft

5A.1 A CAR 30 maintenance organisation must, in relation to maintenance in the form of an inspection or a repair for which the CAR 30 maintenance organisation is responsible for ensuring certification for completion of the maintenance in accordance with regulation 42ZE of CAR 1988, retain work documentation packages for the maintenance for a period of 2 years commencing immediately after the date of final certification for the maintenance.

6 Maintenance releases for class A aircraft

6.1 For the purposes of subregulation 43 (1) of CAR, CASA directs that the maintenance release for a class A aircraft is the maintenance release that is identified in an operator’s maintenance control manual.

6.2 Subject to regulation 47 of CAR, a maintenance release for a class A aircraft remains in force only for the period specified in the manual.

6.3 A copy of the maintenance release must be retained by the person issuing it.

6.4 Before a maintenance release for a class A aircraft is issued, it is to be signed by:

(a) the person certifying for the co-ordination of the maintenance release inspection; or

(b) where the maintenance release inspection has been certified by 1 person, that person;

using the procedures specified in the CAR 30 maintenance organisation’s procedures manual.

6.5 The person signing a maintenance release must ensure that the following information is recorded on the maintenance release at the time it is issued:

(a) the aircraft type, and the registration mark of the aircraft, to which the release relates;

(b) the name of the CAR 30 maintenance organisation issuing the maintenance release;

(c) the place, date and time, of issue of the release;
(d) the date on which, and the total aircraft time-in-service when, the maintenance release ceases to be in force;
(e) the total time-in-service of the aircraft at the time of issue of the release;
(f) all requirements and conditions relating to maintenance (other than daily inspections) required to be carried out on the aircraft by CAR and Orders during the period the maintenance release is to remain in force, including the total time-in-service or date, as applicable, at which that maintenance is due;
(g) any permissible unserviceabilities carried over from the previous maintenance release.

6.6 For paragraph 6.5, a printed copy of required maintenance produced by a computerised maintenance tracking and management system may be permanently attached to the “Maintenance Required” section of the maintenance release.

6.7 Subparagraphs 6.5 (d), (e) and (f) are satisfied if:
(a) the required information is recorded and kept up-to-date in accordance with a procedure included in an operator’s maintenance control manual for the aircraft the subject of the maintenance release; and
(b) the operator’s maintenance control manual has been prepared in accordance with the requirements for maintenance control manuals prescribed under regulation 42ZY of CAR 1988.

7 Maintenance releases for class B aircraft
7.1 For the purposes of subregulation 43 (1) of CAR, CASA directs that the maintenance release for a class B aircraft is 1 of the following:
(a) a maintenance release in the form set out at Attachment 1 to Appendix 3;
(b) the CAA or CASA Maintenance Release Form DA741, but only until stocks of this form, acquired or printed in bulk before 22 December 2015, have been exhausted;
(c) an alternative form approved in writing by CASA.

7.2 Subject to regulation 47 of CAR and paragraph 7.3, a maintenance release for a class B aircraft remains in force for whichever of the following periods ends first:
(a) a period not exceeding 1 year;
(b) the aircraft time-in-service that is identified by the certificate of registration holder in the aircraft’s log book statement as the period for which the maintenance release is to remain in force.

7.3 Subparagraph 7.2 (b) does not apply to private class B aircraft being maintained to the CASA Maintenance Schedule.

7AA Maintenance releases to be completed in accordance with Appendix 3

7AA.1 For subsections 6 and 7, a maintenance release completed in the form set out at Attachment 1 to Appendix 3 must comply with the requirements set out in Appendix 3.

7AA.2 A form mentioned in paragraph 7.1 (b) must be completed in accordance with the requirements set out in Appendix 3 as if the form was a form mentioned in paragraph 7.1 (a).
Note The forms mentioned in paragraph 7.1 (b) are substantively identical to the form mentioned in paragraph 7.1 (a), with minor formatting differences.

7A Structural maintenance of composite structure aircraft

7A.1 In this subsection:

- **CAR 1988** means the *Civil Aviation Regulations 1988*.
- **CASR 1998** means the *Civil Aviation Safety Regulations 1998*.

composite maintenance means maintenance of the composite structures of a composite structure aircraft.

composite structure aircraft means an aircraft of fibre reinforced plastic composite construction.

Group 7 LAME means the holder of an aircraft maintenance engineer licence issued under regulation 31 of CAR 1988 and endorsed with a category airframes Group 7 rating as described in Civil Aviation Order 100.91 (*CAO 100.91*).

specially qualified person means a person who:

- (a) holds a category B1 licence issued under Part 66 of CASR 1998; and
- (b) is also 1 of the following:
 - (i) a person who at any time before 27 June 2011 was a Group 7 LAME, provided that the person’s licence had not been cancelled by CASA; or
 - (ii) a person who holds at least 1 of the following:
 - (A) AQF qualification MEA405;
 - (B) a Transport Canada AME licence endorsed with an “S” rating;
 - (C) a New Zealand AME licence endorsed with an aeroplane Group 4 rating;
 - (D) another qualification approved in writing by CASA as an appropriate qualification for performing composite maintenance;
 - (E) an authorisation issued by CASA under subregulation 42ZC (6) of CAR 1988 to perform composite maintenance.

Note A category B1 licence holder is entitled to carry out an inspection of a composite structure aircraft to determine the airworthiness of that aircraft.

7A.2 Composite maintenance on a composite structure aircraft must be carried out by:

- (a) a Part 145 organisation; or
- (b) a CAR 30 maintenance organisation.

7A.3 If composite maintenance is carried out on a composite structure aircraft by a CAR 30 maintenance organisation, the organisation must ensure that only a specially qualified person, employed by the organisation, performs the maintenance.

Note Apart from the separate privileges of a Part 145 organisation, composite maintenance of a specified aircraft may only be performed by a qualified person employed by a CAR 30 maintenance organisation. Therefore, such maintenance may not be carried out by a person referred to in paragraph 42ZC (4) (b) of CAR 1988, sometimes known as an independent LAME or a LAME employed by an independent LAME.
8 Inadequate maintenance schedules

8.1 For the purposes of subregulation 42A (6) of CAR, CASA declares that the manufacturers’ maintenance schedules for the following aircraft are inadequate and must not be used as the maintenance schedules for the aircraft:

- Aero 145;
- Aero L40;
- Aero L200A;
- Aero Commander 500 (excluding the 500S model);
- Auster, all aircraft;
- Avro, all aircraft;
- Beagle Airedale;
- Beagle Terrier;
- Beechcraft 17;
- Beechcraft 18;
- Beechcraft 50;
- British Aircraft Manufacturing Co. Swallow;
- Callair A9;
- Chrislea CH 3-4;
- De Havilland DH60 (Moth);
- De Havilland DH82 (Tiger Moth);
- De Havilland DH 84 (Dragon);
- De Havilland DH87 (Hornet Moth);
- De Havilland DH89 (Dragon Rapide);
- De Havilland DH90 (Dragonfly).

- Fairchild 24;
- Junkers A50;
- Klemm, all aircraft;
- Lockheed L-12;
- Percival Gull;
- Percival Proctor;
- Piaggio P166;
- Piper J2;
- Piper J3;
- Piper PA11;
- Piper Colt;
- Piper Triponer;
- Piper PA23 Apache;
- Piper PA26 Pawnee;
- Porterfield, all aircraft;
- SAAB 91;
- Stinson, all aircraft;
- WACO, all aircraft, other than WACO Classic Aircraft Corporation;
- YMF-F5 and YMF-F5C series aircraft that have FAA supplemental type certificate SA1000GL incorporated at manufacture.

Note Acceptable alternatives for these aircraft are the CASA Maintenance Schedule or a schedule developed by the holder of the certificate of registration for an aircraft and approved by CASA under regulation 42M of CAR.

8A Maintenance of general aviation recovery device (GARD) equipment

8A.1 In this subsection:

- airframe parachute means a parachute that is a component of GARD equipment.
- approved course of training means a course of formal training, or a period of relevant practical experience, or both a course of formal training and a period of practical experience:
 (a) designed to:
 (i) convey detailed knowledge of GARD equipment (other than the airframe parachute), and the aircraft controls, systems and precautions for use of such equipment; and
 (ii) in the light of such knowledge, enable the holder of a relevant category B1 licence to safely perform maintenance on GARD equipment; and
 (b) approved in writing for the licence holder by his or her CAR 30 maintenance organisation.
general aviation recovery device (GARD) equipment means a recovery system that is installed on an aircraft and that, however it is activated and the parachute deployed, is designed to control the aircraft’s descent in an emergency such as engine failure or loss of aerodynamic control.

specially qualified LAME means a licensed aircraft maintenance engineer who:
(a) holds a category B1 licence, issued under Part 66 of CASR 1998 in a subcategory relevant to the aircraft on which the person performs work; and
(b) has successfully completed an approved course of training in the operation and maintenance of GARD equipment.

8A.2 Maintenance of GARD equipment must be carried out by:
(a) a Part 145 organisation; or
(b) a CAR 30 maintenance organisation.

8A.3 For regulation 38 of CAR 1988, CASA directs that if maintenance of GARD equipment or an airframe parachute is carried out by a CAR 30 maintenance organisation, the organisation must ensure that only the following persons, employed by or working under an arrangement with the organisation, may perform the maintenance:
(a) for maintenance of GARD equipment, other than the airframe parachute — a specially qualified LAME;
(b) for maintenance of the airframe parachute — a person who holds:
 (i) a Packer B qualification granted by the Australian Parachute Federation (APF); or
 (ii) a rigger qualification granted by the APF; or
 (iii) a document evidencing successful completion of a parachute packer or rigger course of training approved in writing by CASA

8A.4 A person mentioned in sub-subparagraph 8A.3 (b) (i) is limited to inspecting and packing parachutes.

8A.5 Following completion of maintenance of an airframe parachute, a person mentioned in paragraph 8A.3 must certify for the completion of maintenance by signing the relevant maintenance record in the CAR 30 maintenance organisation’s work documentation package.

Note Apart from the separate privileges of a Part 145 organisation, maintenance of GARD equipment may only be carried out by a specially qualified LAME employed by a CAR 30 maintenance organisation. Therefore, such maintenance may not be carried out by a person referred to in paragraph 42ZC (4) (b) of CAR 1988, sometimes known as an independent LAME or a LAME employed by an independent LAME.

9 Mandatory maintenance requirements

9.1 For regulation 38 of CAR 1988, CASA directs the holder of a certificate of registration for an aircraft to comply with the mandatory maintenance requirements identified in the approved design of the aircraft, engine or propeller as the case requires, as 1 or both of the following:
(a) the CMR;
(b) airworthiness limitations (AWL)

Note Contravention of a CASA maintenance direction under this subsection is a strict liability offence under regulation 38 of the Regulations.

9.2 For paragraph 9.1:

Certification Maintenance Requirements or CMR means the required scheduled maintenance tasks which were established during the design
certification of an aircraft as operating limitations of the aircraft’s type certificate (TC) or supplemental type certificate (STC).

9A Electronic navigational databases

9A.1 (a) The operator, the pilot in command and any other flight crew member of an aircraft may update the navigation system database of the Global Navigation Satellite System (GNSS) navigation equipment fitted to an aircraft if the update is carried out:

(i) without dismantling any part of the GNSS navigation equipment or removing any aircraft panels for access; and

(ii) in accordance with the instructions of the manufacturer of the GNSS navigation equipment.

(b) For subparagraph (a), the operator of an aircraft may authorise a person, other than the pilot in command or a member of the flight crew, to perform the update if the person has met the requirements, if any, set out in the operator’s operations manual for performing the update.

10 Approved single engine turbine-powered aeroplanes (ASETPA)

10.1 For subparagraph 174B (2) (d) (ii) of CAR 1988, a single engine turbine-powered aeroplane is approved for charter operations that involve the carrying of passengers for hire or reward in flights at night under the V.F.R. if it:

(a) complies with each of the requirements mentioned in Part 1 of Appendix 2; and

(b) is approved in writing by CASA in the STC, TAC or TC for the aeroplane.

Note Under subparagraph 174B (2) (d) (i), the aeroplane operator must also hold a CASA approval for the conduct of the operation.

10.2 For subparagraph 175A (1) (d) (ii), a single engine turbine-powered aeroplane is approved for charter operations that involve the carrying of passengers for hire or reward in flights under the I.F.R. if it:

(a) complies with each of the requirements mentioned in Part 1 of Appendix 2; and

(b) is approved in writing by CASA in the STC, TAC or TC for the aeroplane.

Note Under subparagraph 175A (1) (d) (i), the aeroplane operator must also hold a CASA approval for the conduct of the operation.

10.3 When CASA is providing an operator approval under subparagraph 174B (2) (d) (i) or 175A (1) (d) (i), each of the requirements mentioned in Part 2 of Appendix 2 will be assessed by CASA as part of the approval.

11 Additional maintenance requirements

11.1 This subsection applies to the holder of a certificate of registration for an aircraft that uses 1 of the following as the aircraft’s system of maintenance or maintenance schedule:

(a) an approved SOM;

(b) the manufacturer’s maintenance schedule;

(c) the CASA maintenance schedule.

11.2 For regulation 38 of CAR 1988, the holder of the certificate of registration for an aircraft is directed to ensure that the following additional maintenance is carried out on the aircraft by a person permitted under regulation 42ZC of CAR 1988:
Civil Aviation Order 100.5

100.5

13

(a) any maintenance action set out in Appendix 1 that is not required by the aircraft’s system of maintenance or a maintenance schedule referred to in paragraph 11.1; and
(b) the maintenance set out in clauses 16 and 17 of Appendix 1.

11.3 Unless stated otherwise in this section, a maintenance action required by the approved SOM or a maintenance schedule for an aircraft component or aircraft system will prevail over any maintenance action required in Appendix 1 for that aircraft component or aircraft system.

12 Compliance time extensions for additional maintenance

12.1 This subsection applies to the following clauses of Appendix 1:
(a) clause 3 (pitot-static systems);
(b) clause 4 (pressure altimeters and air data computers);
(c) clause 5 (airspeed indicators);
(d) clause 6 (fuel quantity gauges);
(e) clause 7 (propeller systems);
(f) clause 8 (feathering propellers);
(g) clause 9 (cockpit voice recording systems);
(h) clause 12 (towing release systems);
(i) clause 14 (ATC transponders);
(j) clause 18 (ADF systems);
(k) clause 19 (VOR systems); and
(l) clause 20 (VOR systems in I.F.R.).

12.2 If a time interval is specified for an additional maintenance requirement, that time interval (original time interval) may be extended by up to 10% of the flight hours or calendar days specified (as the case requires), subject to the following:
(a) if the time interval is specified in flight hours — the interval may be extended by not more than 10 flight hours;
(b) if the time interval is specified in calendar days — the interval may be extended by not more than 60 days;
(c) a time interval may be extended once only (the extended time interval); and
(d) after the extended time interval, the next time interval for an additional maintenance requirement must be reduced by the difference in flight hours or calendar days (as the case requires) between the extended time interval and the original time interval.

14 Approval of certain maintenance data

14.1 Subject to paragraph 14.2 and for subregulation 2A (4) of CAR 1988, instructions are approved for paragraph 2A (2) (e) of CAR 1988 if the instructions are:
(a) about how maintenance on an aircraft, an aircraft component or aircraft material is to be carried out; and
(b) in an advisory document, as it exists from time to time:
 (i) compliance with which is not required by law; and
 (ii) published by CASA, the European Aviation Safety Agency, or the NAA of a recognised country
 (iii) not inconsistent with:
 (A) the manufacturer’s data – in which case the manufacturer’s data will prevail to the extent of the inconsistency; or
(B) any other applicable AMD mentioned in regulation 2A of CAR 1988.

Note The approval under this paragraph of certain instructions in a relevant document as maintenance data under paragraph 2A (2) (e) of CAR 1988 does not constitute approval of a modification or repair for the purposes of regulation 42U of CAR 1988. The approval under this paragraph only provides for the instructions in the relevant documents to be used to supplement the information in an approved modification or repair in relation to how that modification or repair may be carried out.

14.2 The approval under paragraph 14.1 of the instructions in a document is subject to the condition that the instructions may only be used if:

(a) the maintenance data mentioned in paragraph 2A (2) (a), (b), (c) or (d) of CAR 1988 for the aircraft, aircraft component or aircraft material does not provide sufficient detail on how the maintenance is to be carried out; and

(b) the person carrying out the maintenance on the aircraft, aircraft component or aircraft material first determines that the instructions are:

(i) appropriate to the aircraft, aircraft component or aircraft material to be maintained; and

(ii) directly applicable to the maintenance that is to be carried out; and

(iii) not contrary to, or inconsistent with:

(A) the manufacturer’s data; or

(B) any other applicable AMD mentioned in regulation 2A of CAR 1988.

14.3 In this subsection:

recognised country has the same meaning as in regulation 21.010B of CASR 1998.
Appendix 1

Additional maintenance requirements

Note For the timing of first tests under this Appendix after 1 August 2013, see subsection 12 of this Order.

1 Definitions

For this Appendix:

tests, for an instrument or instrument system, means the procedures, in accordance with this Appendix, and used in conjunction with the relevant aircraft manufacturer’s approved data, that are required to confirm the accuracy and correct functioning of the instrument or system.

Note The tests described in this Appendix are not comprehensive or exclusive test procedures and for this reason must be used in conjunction with the relevant aircraft manufacturer’s approved data.

2 Balloon etc. intervals

Despite the interval mentioned in any other provision to this Appendix, where a provision to this Appendix applies for an aircraft that is a balloon or a thermal airship without an approved SOM, the interval is not to exceed 36 months.

Note Under civil aviation legislation and for this Appendix, a balloon or a thermal airship falls within the scope of the word “aircraft” unless specifically excluded.

3 Pitot-static systems

3.1 This clause applies to an aircraft’s pitot-static systems.

3.2 Tests must be carried out on an aircraft for pitot-static system leaks.

3.3 For subclause 3.2, the tests must be carried out in accordance with each of the testing procedures set out in clause 1 of Attachment 1 to this Appendix.

3.4 The tests mentioned in subclause 3.2 must be performed:

(a) at intervals not exceeding every 24 months; or

(b) if any pitot-static system components, including instruments, are changed or modified — at the same time as the change or modification, and then at intervals not exceeding every 24 months after that time; or

(c) if maintenance is carried out on the pitot-static system that involves disconnection of any of the pitot-static lines — at the same time as the maintenance, and then at intervals not exceeding every 24 months after that time.

4 Testing pressure altimeters and air data computers

4.1 This clause applies to an aircraft’s testing pressure altimeters and air data computers (if any).

4.2 Subject to subclause 4.3, the pressure altimeters installed in an aircraft must be tested in accordance with:

(a) each of the testing procedures set out in clause 2 of Attachment 1 to this Appendix; or

(b) each of the applicable testing procedures of the NAA of a recognised country mentioned in regulation 21.010B of CASR 1998 that is the NAA of the state of design for the aircraft.
4.3 For an aircraft certificated for single-pilot operations:
(a) the pilot’s pressure altimeter must be tested under subclause 4.2; and
(b) any other pressure altimeter that is not tested must be appropriately placarded to that effect.

4.4 The pressure altimeter tests mentioned in subclause 4.2 must be carried out at intervals not exceeding every 24 months.

Note 1 Test errors must not exceed those specified for pressure altimeters in Attachment 1 to this Appendix.

Note 2 Appropriate test equipment may allow pressure altimeter tests to be carried out either while the altimeter is installed on the aircraft, or in a workshop.

4.5 Any air data computer installed in an aircraft must be tested in accordance with the manufacturer’s maintenance manual.

Note Electronic displays do not require testing.

4.6 If any of the following devices are installed in an aircraft:
(a) an automatic pressure altitude encoder;
(b) an air data computer;
(c) any equivalent device reporting directly to air traffic control (ATC) via the aircraft’s transponder;
the device must be tested in accordance with each of the testing procedures set out in clause 3 of Attachment 1 to this Appendix.

Note Test errors must not exceed those specified in Attachment 1 to this Appendix for the relevant encoders, computers or other devices.

4.7 Subject to subclause 4.8, the automatic pressure altitude encoders mentioned in subclause 4.6 must be tested in conjunction with the aircraft’s pressure altimeter tests mentioned in subclause 4.2.

Note See subclause 4.4 for the interval.

4.8 If the following apply:
(a) an aircraft uses a separate direct reading altimeter for the primary control of altitude;
(b) the aircraft has an automatic altitude reporting system comprising a separate automatic pressure encoder, air data computer, or other equivalent device reporting directly to ATC via the aircraft’s transponder;
then the reporting system must be tested in accordance with subclause 4.6 on each occasion of the removal or the installation of, or a change to, or a modification to:
(c) a system component; or
(d) the system interwiring.

5 Airspeed indicator

5.1 This clause applies to an aircraft’s airspeed indicators.

5.2 The airspeed indicator tests, including determination of the scale error of the aircraft’s installed airspeed indicator must be determined through testing in accordance with subclause 5.3.

5.3 For subclause 5.2, the scale errors at the major graduations of the scale must not exceed ± 4 knots up to the maximum speed of the aircraft, when tested first with...
the pressure increasing, and then with the pressure decreasing. During the test, operation of the airspeed indicator must be smooth and continuous.

5.4 Airspeed indicator tests, including determination of the scale error of the aircraft’s installed airspeed indicator, must be performed at intervals not exceeding every 48 months.

6 Fuel quantity gauges

6.1 Subject to subclause 6.1A, this clause applies to an aircraft if the aircraft’s fuel quantity indicating system:
 (a) relies on float type devices to measure tank fuel levels; or
 (b) does not have a self-test function incorporated into the system.

6.1A This clause does not apply to an aircraft that is maintained in accordance with a maintenance program that adheres to MSG-2 or MSG-3 principles, as in force from time to time.

6.2 The accuracy of an aircraft-installed system for measuring fuel (the system) must be tested and determined.

6.3 For subclause 6.2, the determination must be made in accordance with the following test requirements:
 (a) subject to the tolerances mentioned in this subclause — the indicated quantity of fuel must equal the actual fuel in the fuel tank less the unusable quantity of fuel;
 (b) fuel quantity gauges must be checked for accuracy at all major graduations;
 (c) subject to paragraph (d) — scale errors at empty must not exceed + 0.5% or – 5% of the nominal fuel tank capacity;
 (d) for a system where it is impracticable to correct the empty reading — scale errors at empty must not exceed + 0.5% or – 8% of the nominal fuel tank capacity;
 (e) if either of the following apply:
 (i) scale errors or the ungageable quantity of fuel exceeds ± 5% of the nominal fuel tank capacity; or
 (ii) the gauge is calibrated in fractions of fuel tank capacity;
 then, a placard must be displayed adjacent to the fuel quantity gauge showing:
 (iii) the corrected readings at all major graduations; and
 (iv) the ungageable quantities of fuel;
 (f) fuel quantity gauges must be checked with the aircraft positioned to simulate level flight attitude;
 (g) for paragraph (f):
 (i) electrically operated gauges must have normal system voltages applied; and
 (ii) the fuel quantity at each calibration point must be made by:
 (A) measurement of the fuel added to the fuel tank; or
 (B) a dip or drip stick previously calibrated for the fuel tank;
 (h) during the test, the motion of any fuel quantity gauge must be smooth and continuous.

6.4 Determination of the accuracy of the system must be performed:
(a) at intervals not exceeding every 48 months; and
(b) if any system component or system interwiring is changed or modified —
at the same time as the change or modification, and then after that at
intervals not exceeding every 48 months.

7 Propeller systems

Application

7.1 This clause applies to an aircraft’s fixed-pitch wooden or composite propellers.

Checks

7.2 Within the intervals mentioned in subclause 7.3, the following checks must be performed:
(a) all propeller attachment bolts and hub retaining nuts must be checked to
ensure they have the appropriate torque;
(b) the propeller track must be checked to ensure that the blades are rotating in
the same plane of rotation;
(c) the propeller hubs and blades, including their surface finish, must be
checked for breaks, scores, nicks, cracks, delamination, corrosion, and the
security of the leading edge sheath, to confirm the continuing airworthiness
of the propeller.

Note Where AMD for a specific propeller system is not available, the inspection, maintenance
and field repair methods contained in FAA AC 20-37E, or subsequent revisions, should be used.

7.3 Each check mentioned in subclause 7.2 must be carried out as follows:
(a) after the first flight following a propeller fitment;
(b) when there has been significant change in the average ambient humidity,
due to a seasonal change or a change in aircraft locality;
(c) before a first flight after the aircraft has been idle for an extended period.

Intervals

7.4 Each check mentioned in subclause 7.2 must be carried out at intervals not
exceeding whichever of the following happens first:
(a) every 110 hours in service, or every 110 hours in service after a check for
an event mentioned in paragraph 7.3 (a), (b) or (c);
(b) every 12 months after manufacture, or every 12 months after a check for an
event mentioned in paragraph 7.3 (a), (b) or (c).

8 Feathering propellers — functional check

Application

8.1 This clause applies to a piston engine aircraft fitted with 1 or more feathering
propellers, other than a powered glider.

Checks

8.2 Within the intervals mentioned in subclause 8.3, the aircraft feathering propeller
must be given a ground functional check in accordance with the manufacturer’s
procedures and instructions for feathering and unfeathering the propeller to
ensure that the propeller fully feathers within the time limits specified by the
aircraft manufacturer.
Intervals
8.3 The check mentioned in subclause 8.2 must be carried out at intervals not exceeding whichever of the following happens first:
 (a) every 110 hours in service;
 (b) every 12 months after manufacture;
 (c) the compliance times that have been published as AMD.

9 Cockpit voice recording systems

Application
9.1 This clause applies for a cockpit voice recording system (CVRS) installed on an aircraft for compliance with CAO 20.18 (Aircraft equipment — basic operational requirements).

Testing
9.2 Each voice channel of the CVRS must be tested in accordance with this subclause to ensure proper recording of each of the following audio inputs:
 (a) for the first channel — from each microphone and headset used at the First Officer’s position;
 (b) for the second channel — from each microphone and headset used at the Captain’s position;
 (c) for the third channel — from the flight deck mounted area microphone;
 (d) for the fourth channel — from each microphone and headset used at the station for the third and fourth crew positions;
 (e) if the positions mentioned in paragraph (d) of this subclause are not required — from each microphone and headset used at other flight deck positions having audio selection and transmit facilities;
 (f) if the positions mentioned in paragraphs (d) and (e) of this subclause are not required — from each microphone on the flight deck that is used with the passenger address system, if its signals are not recorded on another channel;

Note The CVRS may need to be removed post-flight and replayed to objectively analyse the quality of the audio recorded on each discrete channel, and where applicable, the correct recording of the ATM data-link messages and related functionality.

9.3 The bulk erase inhibit logic of the CVRS must be tested to ensure that it is functioning properly.

9.4 The CVRS underwater locating device (if fitted) must be tested and maintained in accordance with the manufacturer’s requirements and recommendations.

9.5 Crash sensor switches incorporated into the CVRS power feed must be tested in accordance with the manufacturer’s procedures to ensure they are operating properly.

Intervals
9.6 Each of the tests mentioned in this clause must occur at intervals not exceeding:
 (a) for equipment utilising analogue technology (tape based):
 (i) every 12 calendar months; or
 (ii) 2000 hours’ time-in-service;
 whichever happens first; or
(b) for equipment utilising digital technology (solid state based), every 24 calendar months.

10 Emergency exits

Application

10.1 This clause applies to an aircraft which has an emergency exit, except when the emergency exit:
 (a) is a service door; or
 (b) is a normal means of entering or exiting the aircraft; or
 (c) would be destroyed when operated, for example, a window that is to be smashed open, or a fabric panel that is to be ripped aside.

Testing

10.2 With the aircraft in its normal operating configuration, including all trim and interior fittings installed, the emergency exit must be operated, and operable, in accordance with the placarded instructions.

10.3 If the emergency exit’s operating mechanism is protected by a breakable cover, the cover may be removed before testing the exit.

10.4 In spite of any other provision in this clause, an emergency exit must be tested when role equipment or interior configuration is changed in a way that may inhibit operation of the exit.

11 Life rafts, life jackets and inflatable flotation devices

Application

11.1 This clause applies to each life raft, life jacket and inflatable flotation device that, for the purpose of complying with civil aviation legislation, is:
 (a) installed or carried on an aircraft; or
 (b) to be installed or carried on an aircraft.

Testing

11.2 The life raft, life jacket or inflatable flotation device must be inspected and tested in accordance with the manufacturer’s requirements.

Intervals

11.3 Commencing from the date of manufacture, the life raft, life jacket or inflatable flotation device must be inspected and tested:
 (a) at the periodicity specified by the manufacturer; or
 (b) if the approved SOM or maintenance schedule specifies a lesser period — at that lesser period; or
 (c) if a period is not specified by the manufacturer and not provided within the approved SOM or maintenance schedule — after 2 years, and then at intervals not exceeding 12 months.

12 Towing release systems

Application

12.1 This clause applies to an aircraft fitted with a towing release system that is not covered by a manufacturer’s maintenance program.

Note A towing release system to which this clause applies may be supplied by the manufacturer of the aircraft, or a towing release system manufacturer.
Testing

12.2 Before commencement of the first flight on a day during which the aircraft is engaged in towing operations, the pilot in command or a holder of an aircraft maintenance engineer licence for the aircraft must:
 (a) ensure that the cockpit control for the towing release system has full and free movement; and
 (b) check that the release mechanism is clean; and
 (c) check for visible signs of damage or wear of the release mechanism; and
 (d) perform a functional check; and
 (e) certify that the testing mentioned in paragraphs (a) to (d) have been satisfactorily completed in column 2 of Part 3 of the maintenance release.

12.3 Before a maintenance release may be issued for the aircraft, the person performing the maintenance release inspection must:
 (a) clean and lubricate the hook mechanism;
 (b) check the beak and other parts for wear;
 (c) check the condition of operating levers, cables and pulleys; and
 (d) test the ability of the system mechanism to return to a safe over-centre position of with a return force, measured at the activating lever of the hook, of not less than 200 N (Newton) (20.4 kg force).

12.4 At intervals not exceeding the earlier of 100 hours’ time in service or 1 year, the holder of a Part 66 licence in the B1.1 or B1.2 subcategories authorising maintenance on the aircraft, or the holder of an authority to carry out maintenance on aircraft under regulation 33B of CAR 1998, must:
 (a) remove and service the release assembly in accordance with the manufacturer's data and instructions; and
 (b) test that the pilot effort is less than 200 N (20 kg force) with a 4.5 kN (459 kg force) load applied to the release anywhere in a 30 degree cone.

Note Towing release mechanisms may be overhauled by a Gliding Federation of Australia (GFA)-approved Inspector in accordance with the requirements contained in the relevant Airworthiness Directives issued by the GFA from time to time. The overhaul status of the towing release assembly must be adequately documented.

13 Electrical hoist assembly — earth bonding testing

Application

13.1 This clause applies for an aircraft with an electrical hoist assembly that does not have specific bonding testing requirements.

Testing

13.2 The electrical bonding between each adjacent component part of the electrical hoist assembly must be tested:
 (a) to a maximum resistance of 0.010 OHM; and
 (b) using a bonding tester capable of resolving to 0.002 OHM.

13.3 For subclause 13.2, component parts of the electrical hoist assembly that must be considered adjacent to other parts include the control box, the electrical motor casing, the hoist body, the hoist arm and the attachment bracket.

Intervals

13.4 Testing of the electrical hoist assembly must be carried out:
 (a) before it is installed in the aircraft; and
(b) after it is installed in the aircraft — at intervals not exceeding every 24 months.

14 Periodic checking and testing of ATC transponders

Definition

14.1 In this clause:

electron tube technology or *ETT* means technology that uses the physical and electrical characteristics of a physical body to oscillate and amplify a signal at its resonant frequency for subsequent broadcast, including through thermionic valves, klystrons or cavity oscillators.

Note 1 As the components age, the characteristics which provide the signal stability vary which affects the output signal.

Note 2 Transponders using ETT include, for example, Honeywell (Bendix-King) KT76A, Narco AT150 and ARC RT859.

Application

14.2 This clause applies to all air traffic control (ATC) transponders.

Testing

14.3 Before an ATC transponder is used for the first time in an aircraft, it must be system tested in accordance with the requirements of Appendix F of FAR 43, using Mode A code 2100.

14.4 After the test mentioned in subclause 14.3, and within the intervals mentioned in subclause 14.7, each ATC transponder must be system tested in accordance with the requirements of Appendix F of FAR 43, using Mode A code 2100.

Note Consideration should be given to aligning this test with that required under clauses 3, 4 and 5 of this Appendix 1.

14.5 After the test mentioned in subclause 14.3, without affecting the requirements under subclause 14.4, and within the intervals mentioned in subclause 14.8, each ATC transponder using ETT must also be tested in accordance with the requirements of Appendix F of FAR 43, using Mode A code 2100, to confirm that:

(a) the duration of all reply pulses (the pulse width) is at least 0.35, and not more than 0.55, microseconds; and
(b) the amplitude variation between 1 reply pulse and any other reply pulse is not more than 1 dB.

14.6 An ATC transponder which fails to comply with any requirement under subclause 14.3, 14.4 or 14.5, must not be used in an aircraft until it has been:

(a) repaired or replaced in accordance with the requirements of CAR 1988 and CASR 1998; and
(b) system tested in accordance with subclause 14.3 or 14.4, and tested in accordance with subclause 14.5 (if applicable).

Intervals

14.7 For subclause 14.4, the interval is whichever of the following applies:

(a) within 24 months after the ATC transponder was first system tested in accordance with subclause 14.3, and at intervals not exceeding every 24 months after that;
(b) within 24 months after the date on which the same system test was last conducted under AD/Rad/47: Periodic Testing of ATC Transponders (as in force immediately before 22 December 2015), and at intervals not exceeding every 24 months after that;
(c) the intervals in accordance with the approved SOM for the aircraft under regulation 42M of CAR 1988.

14.8 For subclause 14.5, an ATC transponder using EET must be tested at the same time as the transponder is system tested in accordance with subclause 14.7.

Note Generic guidance on the testing of transponders is available in AWB 34-013 and AWB 34-09.

15 Compressed gas cylinders

Application
15.1 This clause applies for an aircraft (except a hot air balloon) which is installed with a compressed gas cylinder that:
(a) is rechargeable; and
(b) is not a fire extinguisher.

Testing
15.2 The cylinder must be emptied before inspection and testing.
15.3 Subject to subclause 15.4, the cylinder must:
(a) be hydrostatically tested in accordance with subclauses 15.5 to 15.9; and
(b) after each hydrostatic expansion test and hydrostatic proof test, have its markings updated on the cylinder to reflect the compliance status of the cylinder.
15.4 Paragraph 15.3 (a) does not apply to the following:
(a) a cylinder with a working pressure of less than 1 MPa;
(b) a cylinder, manufactured in the USA, with an outside diameter of less than 51 mm and a length of less than 610 mm.
15.5 Testing of the cylinder must include testing by interior hydrostatic pressure in a water jacket or other apparatus suitable to determine the expansion of the cylinder.
15.6 For subclause 15.5, permanent volumetric expansion of the cylinder must not exceed:
(a) 10% of total volumetric expansion at test pressure; or
(b) more than 1/5000th of the cylinder’s original volume.
15.7 If a cylinder’s specifications do not adequately define damage limits, 50% of the damage tolerances stated in Australian Standard AS2030 must be applied.
15.8 A cylinder manufactured in the USA and marked 3HT must be inspected and tested in accordance with the USA Compressed Gas Association Pamphlet C-8.

Note See FAR 49 180.209 (k) and FAR 180.213 (c).
15.9 A hydrostatic proof test of a cylinder is an acceptable alternative to a hydrostatic stretch test only if the hydrostatic proof test is permitted by the cylinder’s specification.
15.10 Inspection of a cylinder must include the following:
(a) visual internal inspection;
Civil Aviation Order 100.5

15.11 Subject to subclauses 15.12 and 15.13, inspection and testing of cylinders under this clause must be carried out at intervals not exceeding every 5 years after manufacture.

15.12 For 3HT cylinders, inspection and testing under this clause must be carried out at intervals not exceeding every 3 years after manufacture.

15.13 For DOT-E type cylinders, inspection and testing under this subclause must be carried out:
 (a) at the intervals mentioned in the latest revision of the applicable DOT Special Permit; or
 (b) at intervals not exceeding every 3 years after manufacture.

15.14 For the cylinder valve and regulator, inspection and testing under this subclause must be in accordance with the following:
 (a) the manufacturer’s specifications; or
 (b) if there are no manufacturer’s specifications — in accordance with Australian Standard AS2337.1-2004, paragraph 10.2.2.

Intervals
15.15 Inspection and testing of the cylinder valve and regulator under this clause must be carried out:
 (a) in accordance with the intervals specified by the manufacturer; and
 (b) concurrently with a cylinder inspection.

Unfitness and retirement
15.16 A rechargeable cylinder must be retired from service not later than as follows:
 (a) in accordance with the manufacturer’s specification; or
 (b) for a 3HT cylinder:
 (i) after 4 380 pressurisations (cycles); or
 (ii) 24 years after its date of manufacture; or
 (c) for a HOLASW 1** cylinder:
 (i) after 5,000 pressurisations (cycles); or
 (ii) 25 years after its date of manufacture;
 (d) for a fibre-wrapped cylinder:
 (i) at the limit specified in the applicable DOT-Exemption; or
 (ii) 15 years after its date of manufacture.

15.17 Cylinders that no longer comply with inspection limits or test requirements must be rendered unfit for further use in accordance with AS 2030.

15A.1 This clause applies to aircraft to which this section applies that are fitted with oxygen systems for the use of operating crew and passengers.

Oxygen standards
15A.2 The following persons must replenish and maintain the oxygen dispensing units in an aircraft in accordance with the breathing oxygen standards specified in the approved design for the aircraft:
(a) a person who holds a subcategory B1.1 or B1.2 or category B2 aircraft maintenance engineer licence, with appropriate aircraft type rating (if applicable); or
(b) a person who holds a maintenance authorisation for maintenance of aircraft oxygen systems.

15A.3 If the approved design does not specify the breathing oxygen standards for the aircraft, the oxygen dispensing units in the aircraft must be replenished and maintained in accordance with 1 of the following standards as they exist from time to time:
(a) SAE AS8010C — Aviator’s Breathing Oxygen Purity Standard;
(b) MIL-O-27210 Revision F — Oxygen, Aviator’s Breathing, Liquid and Gas;
(c) a standard approved by CASA

17 Fire protection in toilet areas

Application
17.1 This clause applies to an aeroplane that has 1 or more toilets equipped with receptacles for paper waste or used linen (a receptacle).

Testing and repair of receptacles for paper waste or used linen
17.2 The aeroplane operator (the operator) must ensure that, before a receptacle is used for the first time on the aeroplane it is inspected and tested in accordance with subclause 17.3.

17.3 Within the intervals mentioned in subclause 17.5, the operator must ensure that the door, lid, flap or other device giving access to the inside of the receptacle (whether for depositing or removing waste or linen) is inspected and tested so that its proper operation, fit, sealing, and latching or locking will contain a possible fire within the receptacle.

17.4 The operator must ensure that a receptacle which fails an inspection and test under subclause 17.3 must not be used until it has been:
(a) repaired or replaced; and
(b) inspected in accordance with subclause 17.3.

Intervals
17.5 For subclause 17.3, the inspection and testing of each receptacle must be conducted at whichever of the following intervals is least restrictive:
(a) at intervals not exceeding every 1 000 hours after it was last inspected and tested in accordance with subclause 17.2; or
(b) within 100 hours of 22 December 2015, and at intervals not exceeding every 1 000 hours after that.

<table>
<thead>
<tr>
<th>Checks required at (in degrees) (Column 1)</th>
<th>Maximum permissible residual error (Column 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° and ± 15°</td>
<td>±5°</td>
</tr>
<tr>
<td>180° and ± 15°</td>
<td>±5°</td>
</tr>
<tr>
<td>Any other bearing</td>
<td>±6°</td>
</tr>
</tbody>
</table>
18 ADF systems — periodic checking

Application
18.1 This clause applies only for the ADF navigation systems of an Australian aircraft engaged in IFR flight for which the holder of the certificate of registration has elected to use the CASA maintenance schedule.

Note The CASA maintenance schedule is set out in Schedule 5 — CASA maintenance schedule, of CAR 1988.

Checks — quadrantal errors
18.2 Each ADF navigation system must be checked for accuracy and correct performance in all modes of operation for quadrantal errors.
18.3 The following must be done:
 (a) apply corrections for any quadrantal errors detected;
 (b) after the application of corrections for any quadrantal errors, ensure that the maximum permissible residual error mentioned in a row of column 2 of the following table, for a check mentioned in column 1 of the same row, are not exceeded:

Checks — dual ADF systems
18.4 Where there are any dual ADF systems — check and ensure that each system does not interfere with the operation of the other system.

Intervals
18.5 The checks mentioned in this clause must be carried out each time a periodic inspection is carried out in accordance with paragraphs 2.4 and 2.5 in Part 2 of Schedule 5 of CAR 1988.

19 VOR systems — periodic checking

Application
19.1 This clause applies only for the following navigation systems (the relevant systems) of an Australian aircraft engaged in IFR flight which the holder of the certificate of registration has elected to use the CASA maintenance schedule:
 (a) all VOR systems;
 (b) all localiser systems;
 (c) all glideslope systems.

Note The CASA maintenance schedule is set out in Schedule 5 — CASA maintenance schedule, of CAR 1988.

Checks
19.2 Check and ensure that the level of interference between the relevant systems, and any combination of other aircraft systems normally operated in flight, is not of a level sufficient to cause either of the following:
 (a) a significant deflection of the flight path indicator when the flag is concealed;
 (b) any degradation of the readability of the station identification.
19.3 For subclause 19.2, a level of interference which is merely intermittent or short-term may be ignored, but only if it does not cause the deflection or degradation mentioned in paragraphs 19.2 (a) and (b).

19.4 Check and ensure that the level of interference from any source, intermittent, short-term or otherwise, is not of a level sufficient to cause the flag to indicate usability in the absence of a usable signal.

Intervals
19.5 The checks mentioned in this clause must be carried out each time a periodic inspection is carried out in accordance with paragraphs 2.4 and 2.5 in Part 2 of Schedule 5 of CAR 1988.

20 VOR in I.F.R. — periodic checking

Application
20.1 This clause applies only for the following navigation system of an Australian aircraft for which the holder of the certificate of registration has elected to use the CASA maintenance schedule: a VOR system installed in an aircraft equipped for flight under the I.F.R.

Note The CASA maintenance schedule is set out in Schedule 5—CASA maintenance schedule, of CAR 1988.

Checks
20.2 Check and ensure that each of the following requirements is the case:

(a) based on tests made on a representative number of radials, the deviation indicator must centre when the omnibearing selector (OBS) is within 3 degrees of the selected radial;

(b) the deflection sensitivity must be such that a 5 dot left and a 5 dot right deflection must be obtained when the OBS is varied 10 degrees ± 2 degrees from the on-course setting, and the indications must be of the correct sense;

(c) where installed, the radio magnetic indicator (RMI) reading must be within 4 degrees of the selected radial;

(d) the TO-FROM indicator must continue to show TO or FROM as originally selected when the OBS is rotated by ± 45 degrees from the selected radial;

(e) the flag must remain concealed during each of the tests mentioned in paragraphs (a) to (d), however, when the signal input level is reduced so as to cause the deviation indicator deflection to fall by 2 dots, the flag must be at least partly visible.

Note 1 A simulator may be used for the checking mentioned in paragraphs 20.2 (a) to (e).

Note 2 The sensitivities referred to in this subclause are related to a “standard” 5 dot-0-5 dot, 150 microamperes-0-150 microamperes indicator. Proportional deflections apply to other than “standard” indicators.

Intervals
20.3 The checks mentioned in this clause must be carried out each time a periodic inspection is carried out in accordance with paragraphs 2.4 and 2.5 in Part 2 of Schedule 5 of CAR 1988.
21 **Glidescope in I.F.R. — periodic checking**

Application
21.1 This clause applies only for the following navigation system of an Australian aircraft for which the holder of the certificate of registration has elected to use the CASA maintenance schedule: a glidescope system installed in an I.F.R. aircraft.

Note The CASA maintenance schedule is set out in Schedule 5 — CASA maintenance schedule, of CAR 1988.

Checks
21.2 Check and ensure that each of the following requirements is the case:

(a) the deviation indicator must centre within less than ½ (± 12 microamperes) when the tone ratio is 0 dB (ddm = 0);

(b) the sensitivity must be such that the deviation indicator deflection is 4.3 dots ± 0.7 dots (110 to 150 microamperes) for both up and down deflections when using a signal with 3.3 dB tone ratio, or 2.7 dots ± 0.3 dot (68 to 93 microamperes), when using a 2 dB tone ratio, and the deflection must be in the correct sense;

(c) the flag must remain concealed during each of the tests mentioned in paragraphs (a) and (b), however, when the signal input level is reduced so as to cause the deviation indicator deflection to fall by 2 dots, the flag must be at least partly visible.

Note 1 A simulator may be used for the checking mentioned in paragraphs 21.2 (a) to (c).

Note 2 The sensitivities referred to in this subclause are related to a “standard” 5 dot-0-5 dot, 150 microamperes-0-150 microamperes indicator. Proportional deflections apply to other than “standard” indicators.

Intervals
21.3 The checks mentioned in this clause must be carried out each time a periodic inspection is carried out in accordance with paragraphs 2.4 and 2.5 in Part 2 of Schedule 5 of CAR 1988.
Testing procedures for:

Pitot-static systems
Pressure altimeter systems
Air data computers
Automatic pressure altitude encoders
Other transponder devices

Clause 1 Pitot-static system test

1. **Static pressure systems**

 Performance of the test procedures set out below, with all static instruments connected, must ensure that any leakage present is within the tolerance specified for the procedure.

 a. Visually inspect the ports, plumbing, accessories and instruments connected to the static system. Repair or replace those parts which are defective, for example, broken “B” nuts, cracked flare sleeves, deteriorated flexible tubing and quick disconnects, bad valves etc. If purging is necessary, use compressed air or nitrogen to remove foreign matter which may have accumulated in the tubing. Ensure that all static instruments are disconnected before commencing to purge.

 b. Ensure that no alterations or deformations of the airframe surface are present that would affect static air sensing. This is of particular importance for RVSM aircraft.

 c. Check any static port heaters to assure proper operation.

 d. If an aircraft has more than 1 static system, test each system separately to assure its independence and that the leak rate for each system is within tolerance.

 e. Connect the test equipment directly to the static ports, if practicable. If not practicable, connect to a static system drain or tee connection and seal off the static ports. If the test equipment is connected to the static system at any point other than the static port, it must be made at a point where the connection may be readily inspected for system integrity after the system is returned to its normal configuration.

 f. Determine that any leakage is within the tolerances mentioned in paragraph (g) or (h) (as the case requires).

 g. For unpressurised airplanes — evacuate the static pressure system to a pressure differential of approximately 33 hPa or to a reading on the altimeter that is 1000 feet above the aircraft’s elevation at the time of the test. Without additional pumping for a period of 1 minute, the loss of indicated altitude must not exceed 100 feet on the altimeter.

 h. For pressurised airplanes — evacuate the static pressure system until a pressure differential equivalent to the maximum cabin pressure differential for which the airplane is type certificated is achieved. Without additional
pumping for a period of 1 minute, the loss of indicated altitude must not exceed 2 per cent of the equivalent altitude of the maximum cabin differential pressure or 100 feet, whichever is greater.

(i) On completion of the static pressure system test, ensure that all static port seals are removed.

(2) Pitot-systems
 (a) The pitot system is tested for leaks by applying a pressure at the pitot head sufficient to cause the airspeed indicator to read 120 knots, or the maximum indicated speed, whichever is the greater.
 (b) There must be no discernible lag in the movement of the airspeed indicator pointer with the application of the pressure, as such a lag indicates restrictions in the piping.
 (c) There must be no decrease in the reading when the system is sealed for at least 10 seconds.

Clause 2 Tests for altimeters and air data computers

Note For testing of air data computers, see subclause 2 (8) below.

(1) Environmental conditions test
 (a) Vibration (intended to minimise the effects of friction). If suitable test equipment is available, each test for performance may be conducted with the instrument installed in the aircraft. If suitable test equipment for an installed test is not available, or if the instrument fails the installed test, the instrument must be removed from the aircraft and tested or retested with vibration applied.
 (b) Temperature. When tests are conducted with the temperature substantially different from ambient temperature of approximately 25°C, allowance must be made for that temperature difference.

(2) Scale error test
 (a) With the barometric pressure scale at 1 013 hPa, the altimeter must be successively subjected to pressures corresponding to the altitude specified in Table 1, up to the maximum, normally expected, operating altitude of the aircraft in which the altimeter is, or is to be, installed.
 (b) The reduction in pressure must be made at a rate not in excess of 20 000 feet per minute to within approximately 2 000 feet of the test point.
 (c) The test point must be approached at a rate compatible with the test equipment.
 (d) The altimeter must be kept at the pressure corresponding to each test point for at least 1 minute, but not more than 10 minutes, before a reading is taken.
 (e) The error at all test points must not exceed the tolerances specified in Table 1.
Table 1 Scale error

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Equivalent pressure</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hectopascals</td>
<td>± (feet)</td>
</tr>
<tr>
<td>-1 000</td>
<td>1050</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>1013</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>995</td>
<td>20</td>
</tr>
<tr>
<td>1 000</td>
<td>977</td>
<td>20</td>
</tr>
<tr>
<td>1 500</td>
<td>960</td>
<td>25</td>
</tr>
<tr>
<td>2 000</td>
<td>942</td>
<td>30</td>
</tr>
<tr>
<td>3 000</td>
<td>908</td>
<td>30</td>
</tr>
<tr>
<td>4 000</td>
<td>875</td>
<td>35</td>
</tr>
<tr>
<td>6 000</td>
<td>812</td>
<td>40</td>
</tr>
<tr>
<td>8 000</td>
<td>753</td>
<td>60</td>
</tr>
<tr>
<td>10 000</td>
<td>697</td>
<td>80</td>
</tr>
<tr>
<td>12 000</td>
<td>644</td>
<td>90</td>
</tr>
<tr>
<td>14 000</td>
<td>595</td>
<td>100</td>
</tr>
<tr>
<td>16 000</td>
<td>549</td>
<td>110</td>
</tr>
<tr>
<td>18 000</td>
<td>506</td>
<td>120</td>
</tr>
<tr>
<td>20 000</td>
<td>466</td>
<td>130</td>
</tr>
<tr>
<td>22 000</td>
<td>428</td>
<td>140</td>
</tr>
<tr>
<td>25 000</td>
<td>376</td>
<td>155</td>
</tr>
<tr>
<td>30 000</td>
<td>301</td>
<td>180</td>
</tr>
<tr>
<td>35 000</td>
<td>238</td>
<td>205</td>
</tr>
<tr>
<td>40 000</td>
<td>188</td>
<td>230</td>
</tr>
<tr>
<td>45 000</td>
<td>147</td>
<td>255</td>
</tr>
<tr>
<td>50 000</td>
<td>116</td>
<td>280</td>
</tr>
</tbody>
</table>

(3) Hysteresis test

(a) The hysteresis test must begin within 15 minutes of the altimeter’s initial exposure to the pressure corresponding to the upper limit of the scale error test in subclause (2). While the altimeter is at this pressure, the hysteresis test is to commence.

(b) Pressure must be increased at a rate simulating a descent in altitude at the rate of 5 000 to 20 000 feet per minute until within 3 000 feet of the first test point (50 per cent of maximum altitude).
(c) The test point is then to be approached at a rate of approximately 3 000 feet per minute. The altimeter must be kept at this pressure for at least 5 minutes, but not more than 15 minutes, before the test reading is taken.

(d) After the reading has been taken, the pressure must be increased further, in the same manner as before, until the pressure corresponding to the second test point (40 per cent of maximum altitude) is reached. The altimeter must be kept at this pressure for at least 1 minute, but not more than 10 minutes, before the test reading is taken.

(e) After the reading has been taken, the pressure must be increased further, in the same manner as before, until atmospheric pressure is reached.

(f) The reading of the altimeter at either of the 2 test points must not differ by more than the tolerance specified in Table 2 in subclause 2 (4) from the reading of the altimeter for the corresponding altitude recorded during the scale error test prescribed in subclause (2).

(4) After effect test

Within 5 minutes following the completion of the hysteresis test set out in subclause (3), the reading of the altimeter (corrected for any change in atmospheric pressure) must not differ from the original atmospheric pressure reading by more than the tolerance specified in Table 2.

Table 2 Test tolerances

<table>
<thead>
<tr>
<th>Test</th>
<th>Tolerance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case leak test</td>
<td>±100</td>
</tr>
<tr>
<td>Hysteresis test</td>
<td></td>
</tr>
<tr>
<td>First test point (50 per cent of maximum altitude)</td>
<td>75</td>
</tr>
<tr>
<td>Second test point (40 per cent of maximum altitude)</td>
<td>75</td>
</tr>
<tr>
<td>After effect test</td>
<td>30</td>
</tr>
</tbody>
</table>

(5) Friction test

(a) The altimeter is to be subjected to a steady rate of decrease of pressure approximating 750 feet per minute.

(b) At each altitude listed in Table 3, the change in reading of the pointers after vibration (using a light tapping of the instrument panel adjacent to the altimeter if the altimeter does not have an integral vibrator) must not exceed the corresponding tolerance listed in Table 3.

(c) If the altimeter fails the friction test while installed on the aircraft, the altimeter must be removed and retested.
Table 3 Friction

<table>
<thead>
<tr>
<th>Altitude (feet)</th>
<th>Tolerance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000 -</td>
<td>±70</td>
</tr>
<tr>
<td>2 000 -</td>
<td>70</td>
</tr>
<tr>
<td>3 000</td>
<td>70</td>
</tr>
<tr>
<td>5 000</td>
<td>70</td>
</tr>
<tr>
<td>10 000</td>
<td>80</td>
</tr>
<tr>
<td>15 000</td>
<td>90</td>
</tr>
<tr>
<td>20 000</td>
<td>100</td>
</tr>
<tr>
<td>25 000</td>
<td>120</td>
</tr>
<tr>
<td>30 000</td>
<td>140</td>
</tr>
<tr>
<td>35 000</td>
<td>160</td>
</tr>
<tr>
<td>40 000</td>
<td>180</td>
</tr>
<tr>
<td>50 000</td>
<td>250</td>
</tr>
</tbody>
</table>

(6) Case leak test
The leakage of the altimeter case, when the pressure within it corresponds to an altitude of 18 000 feet, must not change the altimeter reading by more than the tolerance shown in Table 2 in subclause 2 (4) during an interval of 1 minute.

(7) Barometric scale error test
At constant atmospheric pressure, the barometric pressure scale must be set at each of the pressures (falling within its range of adjustment) that are listed in Table 4, and this must cause the pointer to indicate the equivalent altitude difference shown in Table 4 within a tolerance of plus or minus 25 feet.

Table 4 Pressure-altitude difference

<table>
<thead>
<tr>
<th>Pressure (hectopascal)</th>
<th>Altitude difference (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>952</td>
<td>-1 727</td>
</tr>
<tr>
<td>965</td>
<td>-1 340</td>
</tr>
<tr>
<td>982</td>
<td>-863</td>
</tr>
<tr>
<td>999</td>
<td>-392</td>
</tr>
<tr>
<td>1013</td>
<td>0</td>
</tr>
<tr>
<td>1033</td>
<td>+531</td>
</tr>
<tr>
<td>1046</td>
<td>+893</td>
</tr>
<tr>
<td>1049</td>
<td>+974</td>
</tr>
</tbody>
</table>
(8) **Air data computers test**

(a) The tests set out in subclauses (1) to (7) do not apply for air data computers or for systems similar to air data computers (a *similar type*).

(b) Paragraph (c) sets out the tests for the following altimeters:

(i) an altimeter that is an air data computer or similar type with associated computing systems;

(ii) an altimeter that incorporates air data correction internally.

(c) An altimeter mentioned in paragraph (b), must be tested as follows:

(i) in the manner, and to the specifications, provided by the manufacturer of the equipment or aircraft in which the altimeter is installed;

(ii) in accordance with the instructions for continuing airworthiness incorporated in a modification approval for the equipment or aircraft in which the altimeter is installed.

Clause 3
Automatic pressure altitude encoders and ATC transponder system integration test

Automatic pressure altitude encoder test and other transponder devices

Measure the automatic pressure altitude value at the output of the installed ATC transponder when interrogated on Mode C at a sufficient number of test points to ensure that the altitude reporting equipment, altimeters, and ATC transponders perform their intended functions as installed in the aircraft. The difference between the automatic reporting output and the altitude displayed at each altimeter must not exceed 125 feet.
Appendix 2

Approved single engine turbine-powered aeroplanes (ASETPA)

Note See Part 1 and Part 2 of this 2-Part Appendix.

Part 1 Compliance requirements

Note 1 See paragraph 10.1 of this CAO.

Note 2 The aeroplane must comply with each of the following requirements and be approved by CASA. (See subsection 10 above.) Aircraft systems and equipment mentioned within these requirements must be approved under regulation 21.305 of CASR 1998.

1 Aeroplane

The aeroplane type must have been originally certificated as a turbine-powered aeroplane under the certification requirements set under Part 23 of CASR 1998 that are equivalent to FAR 23 amendment 28 or a subsequent amendment.

Note Thus, a turbine conversion of an originally certificated piston-powered aeroplane cannot comply.

2 Engine

2.1 The aeroplane engine type (the engine type) must have documented evidence of an acceptable world fleet reliability rate (WFRR) in accordance with this clause.

2.2 The WFRR must be calculated as a 6 month rolling average, and consist of:

(a) an in-flight shutdown (IFSD) rate of not more than 0.01 per 1 000 hours based on a minimum experience history of 100 000 hours’ time-in-service; or

(b) an IFSD rate for individual engine components gained in the same engine types, or in equivalent engine types as determined by CASA, that collectively meet the standard of paragraph 2.2 (b).

2.3 For paragraphs 2.2 (a) and (b), where the accumulated history is less than the requirement, the history of individual components which have demonstrated time in service in similar engine types, may be taken into account.

3 Engine control system

3.1 The engine control system must meet the requirements of FAR 23.1141 Amendment 29 or a later amendment.

3.2 If use of an emergency/secondary power lever is available, the necessary procedures for its use must be documented in the Aircraft Flight Manual (AFM) or approved equivalent.

4 Engine ignition system

The aeroplane type must be equipped with 1 of the following engine ignition systems:

(a) an automatic ignition system which activates in the event of a loss of an engine parameter, for example, engine speed, turbine temperature or engine torque;

(b) an ignition system which can be selected “ON” and has a duty cycle greater than 1 hour.
5 **Engine fire warning system**

The aeroplane type must be equipped with an engine compartment fire detection and in-flight warning system.

6 **Engine monitoring system**

6.1 The aeroplane type must be equipped with an automatically activated electronic engine trend monitoring recording system, approved by or under Part 21 of CASR 1998, which records the following:

(a) engine parameters referenced in the engine manufacturer’s published engine trend monitoring procedures; and

(b) any other engine performance parameters, mentioned in the approval, that are critical to the engine’s safe continuing airworthiness.

6.2 The engine oil consumption must be monitored in accordance with the engine manufacturer’s recommendations.

6.3 Any anomalies detected by the monitoring mentioned in subclause 6.1 or 6.2 must be checked against the manufacturer’s data to determine appropriate and timely corrective action.

7 **Engine oil metal contamination detection system**

The aeroplane must be equipped with an approved electronic engine oil metal contamination detection system which provides the pilot with an in-flight, visual, caution/warning indication of possible contamination of the engine oil, including as applicable the following:

(a) engine reduction gearbox oil system;

(b) engine accessory gearbox oil system.

8 **Electrical power sources**

The aeroplane must be equipped with the following:

(a) a primary electrical generator and 1 or more primary electrical storage batteries;

(b) an alternative source of electrical power, capable of supplying sufficient continuous power to each of the following:

(i) flight instruments;

(ii) navigation systems;

(iii) lighting systems;

(iv) icing protection systems;

(c) any other aeroplane system required under CAO 20.18 for the endurance of the aeroplane for flight at night under the I.F.R.

9 **Battery capacity**

9.1 There must be an electrical load analysis (**ELA**) for the aeroplane.

Note The ELA is provided to CASA at the time of an application for ASETPA approval.

9.2 The ELA is to certify that the electrical storage capacity of the aeroplane’s prime battery is capable of providing the following:

(a) full operation of essential flight and navigation instruments, lighting and associated icing protection systems during an engine failed glide from the
maximum operating altitude, or an elected limiting altitude, to sea level at
best range glide speed;

(b) sufficient capacity remaining during a glide mentioned in paragraph (a) to
conduct 2 engine start attempts, and lower the flaps and undercarriage.

9.3 The requirement for sufficient battery capacity for the 2 engine starts mentioned
in paragraph 9.2 (b) may be reduced to capacity for 1 engine start, provided:
(a) the aeroplane’s engine fuel feed system from the aeroplane’s fuel tank to
the engine fuel control unit is automatic; and

(b) the engine compressor air intake incorporates continuous anti-icing while
the engine is operating; and

(c) the aeroplane incorporates an automatic engine ignition system which
activates in the event of a loss of an engine parameter such as engine speed,
turbine temperature or engine torque.

9.4 Where the aircraft avionics and electrical configuration:
(a) differs from the approved configuration; or
(b) is altered after approval of the configuration;
a revised ELA must be provided to CASA for approval.

10 Electrical load shedding

10.1 Subject to subclause 10.2, the AFM or approved equivalent must provide the
pilot with a procedure for shedding non-essential electrical systems during a
maximum range glide descent following an engine failure in flight.

10.2 In the case of an automatic shedding procedure that will commence to operate
following an engine failure in flight, the AFM or an approved equivalent is not
required to include a procedure in accordance with subclause 10.1 but must
state, for the information of the pilot, how the automatic shedding procedure
will operate.

11 Flight instrument systems

11.1 The aeroplane must be equipped with flight and navigation instruments and
instrument power sources complying with the regulatory requirements for air
transport I.F.R. operations.

11.2 Aeroplanes incorporating an electronic display flight instrument system must
incorporate secondary attitude and gyroscopic heading instruments located on
the pilot’s flight instrument panel and powered independently of the primary
flight display.

11.3 In aeroplanes approved for flight in icing conditions, the AFM or approved
equivalent must provide the pilot with a procedure for ensuring essential flight
instruments are protected from icing during a maximum range glide descent
through icing conditions following an engine failure in flight.

12 Autopilot system

For single pilot operations, the aeroplane must be equipped with an automatic
pilot providing a capability to:
(a) operate the flight controls to maintain flight and manoeuvre the aeroplane
about the roll and pitch axis; and

(b) fly to an automatic heading; and

(c) provide altitude hold.
13 **Global Navigation Satellite System (GNSS)**
The aeroplane must be equipped with GNSS in accordance with CASA’s instructions issued under:
(a) subregulation 174A (1) of CAR 1988 — for V.F.R. flights; or
(b) subregulation 177 (1) of CAR 1988 — for I.F.R. flights.
Note Instructions are generally in CAOs.

14 **Radar altimeter**
The aeroplane must be equipped with a radar altimeter.

15 **Weather radar**
The aeroplane must be equipped with a weather radar system.

16 **Passenger seats**
16.1 The aeroplane must be equipped with passenger seats identified by:
(a) the part number or model number meeting the requirements of FAR 23.562 and 23.785 to amendment 36 or later amendments; or
(b) for Cessna 208 and 208B aircraft — the following part numbers:
 (i) 2614028-();
 (ii) 2614029-();
 (iii) 2614076-();
 (iv) 2614077-();
 (v) 2619019-();
 (vi) 2619020-().
Note For Cessna 208 and 208B, 2 or 3 place Rear Bench Seats (2614045-() or 2619017-(), IPC Ref 25-21-01), Stowable Seats (2614041-(), ATFS1-01, IPC Ref. 25-21-02) and non-factory seats not meeting FAR 23.562 (AMDT. 23-36), TSO-C127 or TSO-C127a, are not approved for ASETPA operations.
16.2 Each passenger seat must be equipped with a shoulder harness.

Part 2 Operator and aircraft maintenance organisation requirements

Note See paragraph 10.2 of this CAO.

1 **Training**
The maintenance organisation must provide maintenance personnel with training on the concept of ASETPA standards and application of its requirements.

2 **Maintenance**
The aeroplane must be maintained in accordance with an approved SOM and a reliability program designed in accordance with AC 42-3(0).
Appendix 3
Directions for the issue and completion of maintenance releases
Part 1 Compliance requirements
1 Application
This Appendix applies to each of the following persons:
(a) a person authorised to issue maintenance releases in accordance with
regulation 43 of CAR 1988;
(b) a person entering an endorsement on the maintenance release in accordance
with regulation 47 of CAR 1988;
(c) a person making a certification in accordance with regulation 48 of CAR
1988 in respect of an endorsement;
(d) a person making a daily inspection certification or a pilot making the last
flight of the day;
(e) any other person who is not covered in paragraphs (a) to (d), who is
responsible for completing Part 1 of the maintenance release.

Note 1 For paragraph (c), entering a clearing endorsement in the maintenance release for a corresponding
endorsement will be treated as making a certification for that endorsement.

Note 2 For paragraph (c), a pilot may only make a clearing endorsement in the maintenance
release if the rectification action required to clear the endorsement of maintenance that the
pilot is permitted to carry out under paragraph 42ZC (3) (d), or subregulation 42ZC (4) and
Schedule 8 of CAR 1988.

2 Definitions
In this Appendix:
MR means the maintenance release form approved by CASA at Attachment 1 to this
Appendix, which is identifiable by a unique 6-digit serial number prefixed by a capitalised
letter, and comprising of Parts 1, 2 and 3, including any supplementary pages attached in
accordance with clause 8 of this Appendix.

3 Directions
3.1 The person mentioned in paragraph 1 (a) is directed to comply with:
(a) clause 4 of this Appendix before signing and issuing an MR for an aircraft;
(b) clause 5 of this Appendix when completing Part 1 of an MR for an aircraft; and
(c) clause 6 of this Appendix when completing Part 2 of an MR for an aircraft.
3.2 The person mentioned in paragraph 1 (b) is directed to comply with:
(a) clause 5 of this Appendix when completing Part 1 of an MR for an aircraft; and
(b) clause 6 of this Appendix when completing Part 2 of an MR for an aircraft.
3.3 The person mentioned in paragraph 1 (c) is directed to comply with:
(a) clause 6 of this Appendix when completing Part 2 of an MR for an aircraft
3.4 The person mentioned in paragraph 1 (d) is directed to comply with:
(a) clause 7 of this Appendix when making a daily inspection certification or
recording aircraft time in service for Part 3 of an MR for an aircraft.
3.5 The person mentioned in paragraph 1 (e) is directed to comply with:
(a) clause 5 of this Appendix when completing Part 1 of an MR for an aircraft
Part 2 Maintenance release requirements
4 Issue of a maintenance release
4.1 Before signing and issuing an MR, the person must ensure that:
(a) immediately after the completion of the nominated maintenance release
inspection:
(i) all data related to aircraft component changes, which have been certified on
the expired maintenance release, have been transferred to the appropriate
maintenance record pages in the aircraft log book; and
(ii) any Major Assembly History Cards (CASA Form 956 or subsequent issue) and Component History Cards (CASA Form 946 or subsequent issue) relating to components that were replaced during the period that the expired maintenance release was in force have been transferred to the aircraft log book;

(b) each of the following entries, endorsements or ticks are entered on Part 1 of the MR:

(i) the aircraft type and registration;

(ii) the date, and total time-in-service of the aircraft, at which the MR expires;

(iii) the name and certificate number of the authorised person issuing the MR;

(iv) the total time in service of the aircraft at the time of issue of the MR;

(v) the time, date and place of issue of the MR;

(vi) the signature and licence/maintenance authority number of the authorised person signing the maintenance release;

(vii) if the aircraft is:

(A) equipped and is approved in the flight manual for I.F.R. flight — tick the “I.F.R.” checkbox; or

(B) not equipped and is not approved in the flight manual for I.F.R. flight — tick the “V.F.R. Night” checkbox, or the “V.F.R. Day” checkbox, as appropriate;

(viii) if an aircraft is an aeroplane that is intended to be operated in an aerial application operation conducted at night and the aeroplane is not equipped and certificated under Part 21 of CASR 1998 for night V.F.R. flight:

(A) strike through or crosshatch out the box containing the “I.F.R.”, “V.F.R. Night” and “V.F.R. Day” checkboxes; and

(B) enter the following words in the “operational category” box:

“Application Operation – Night”;

(ix) the highest operational category of the aircraft of the following, where the category in (A) is the lowest category and the category in (D) is the highest category:

(A) private;

(B) flight training under Part 141 or Part 142 of CASR 1998;

(C) aerial work; or

(D) charter;

(x) if an aircraft is approved for I.F.R. flight in the aircraft’s flight manual and, at the time of the issue of the maintenance release, the aircraft has not been maintained to the I.F.R.-specific periodic inspection requirements set out in Schedule 5 of CAR 1988, the manufacturer’s maintenance schedule or the approved SOM (as the case requires) — state: “Aircraft limited to V.F.R. flight until I.F.R. inspections certified” in Part 1 as a condition of the MR;

(xi) if the aircraft referred to in subparagraph (x) is subsequently restored to the I.F.R. maintenance standard and the maintenance inspection is entered and certified in the aircraft log book — a clearing endorsement in Part 1 after the maintenance inspection is entered and certified for in the aircraft log book;

(xii) in the “Maintenance required” column — other than daily and line inspections and maintenance release inspections, all requirements and
conditions under CAR 1988 and the CAOs that will require maintenance to be carried out on the aircraft during the period that the maintenance release is to remain in force, including the total time-in-service of the aircraft or the date (as applicable) by which the maintenance or inspection must be carried out; and
(xiii) in the “Maintenance required” column — permissible unserviceabilities (MEL item) or conditions carried forward from the previous maintenance release.

4.2 For subparagraphs 4.1(b) (xii) and (xiii), the person may use a computer printout to detail the required maintenance for the period during which the maintenance release is to remain in force, but must ensure that:
(a) the computer printout is securely attached to the MR; and
(b) the computer printout is updated in a timely manner so that a pilot is aware of whether any maintenance is due before commencing a flight or will become due during a flight.

5 Part 1 of the maintenance release

When completing Part 1 of an MR, the person must:
(a) enter each of the following in the column titled “Maintenance required”:
 (i) other than daily inspections and maintenance release inspections, all scheduled maintenance required under CAR 1988 to be carried out on the aircraft before the maintenance release expiry date or before a specified total time-in-service for the aircraft, whichever is the earlier;
 (ii) endorsements related to permissible unserviceabilities (refer to subregulation 43 (10) and regulation 49 of CAR 1988);
 (iii) endorsements related to conditions, including maintenance flight tests (refer to subregulation 43 (9) and regulations 44 and 49 of CAR 1988);
(b) enter clearing endorsements and certify, in the column titled “Complied with, entered & certified in Log Book or Part 2 of MR”, for the completion of, or compliance with, each of the following:
 (i) any scheduled maintenance entered in Part 1 of the MR;
 (ii) any maintenance to clear a permissible unserviceability entered in Part 1 of the MR;
 (iii) any maintenance to clear a condition entered in Part 1 of the MR;
 (iv) any Airworthiness Directives entered as maintenance required in Part 1 of the MR.

Note 1 For subparagraph (a)(i), a computer printout of required maintenance may be attached to Part 1.

Note 2 Subparagraphs (a)(ii) and (a)(iii) are requirements if a new maintenance requirement becomes applicable after the maintenance release has been issued.

6 Part 2 of the maintenance release

When completing Part 2 of an MR, the person must:
(a) in the column titled “Endorsements” — enter any endorsements required to be entered under the regulations, including the following:
Civil Aviation Order 100.5

(i) defects and major damage for regulation 50 of CAR 1988;
(ii) a statement that the aircraft is unairworthy for regulation 47 of CAR 1988;
(iii) any requirement for a maintenance flight test of the aircraft, aircraft component or item of equipment fitted to the aircraft, the serviceability of which can only be established by a flight test;

Note Subparagraph (a)(iii) refers only to circumstances where certification has been made for the completion of maintenance which may have adversely affected the flight or operating characteristics of the aircraft.

(b) sign and date each endorsement entered by the person;
(c) when clearing an endorsement:
 (i) in the column titled “Clearing endorsements” — record brief details of the maintenance, or record a reference to a log book entry or approved maintenance document; and
 (ii) in the column titled “Clearing signature, licence/authority no. and date” — certify clearance of the endorsement by entering the person’s signature, date of the clearance and either the person’s pilot licence number, AME licence number or airworthiness authority number.

Note 1 For paragraph (c), a signature in the column titled “Clearing signature, licence/authority no. and date” indicates that all of the aircraft maintenance records and certifications for the completion of maintenance have been completed and will be taken to constitute certification for regulation 42ZE of CAR 1988.

Note 2 For paragraph (c), maintenance release inspections and all other maintenance that requires a co-ordination certification must be entered and certified in the aircraft log book — refer to Part 3 (Certification of co-ordination of maintenance) and Part 4 (Final Certification) of Schedule 6 of CAR 1988.

7 Part 3 of the maintenance release

When completing Part 3 of an MR, the person must:

(a) if signing for completion of the daily inspection:
 (i) enter the person’s signature in the column titled “Signature” and enter their pilot licence or AME licence number in the column titled “Licence no.”; and
 (ii) make the signature and entry before the aircraft is first flown on a day;

(b) if making the last flight of a day in an aircraft:
 (i) enter in the column titled “Flight time” the number of hours flown during that day; and
 (ii) enter in the column titled “Progressive total” the aircraft total time in service as the number of hours in the previous entry of the column plus the number of hours entered for subparagraph (i); and
 (iii) if any of the 3 subcolumns under the column titled “Cycle Totals, e.g. Landing/Start Pressurisation” are being used to record aircraft or aircraft component cycles (such as pressurisation/landings etc), hours of aerial application operations or hours of aerobatic operations — make an entry updating the total in the subcolumns as applicable having regard to the flights of the aircraft on the day; and
 (iv) make the entries after the last flight of a day and before the aircraft is next flown.

8 Supplementary pages of maintenance release

If there is insufficient space to record entries in Parts 1, 2 or 3 of an MR, any Part of the MR may be extended by attaching supplementary pages if:

(a) the supplementary pages are either a photocopy of the relevant Part or a blank page drawn up to replicate the columns and headings of the Part; and
Civil Aviation Order 100.5

(b) a notation is made at the bottom of each extended Part and each supplementary page of that Part stating that a supplementary page is attached; and

(c) each supplementary page is identified with the unique serial number for the MR mentioned in Part 1 of the MR; and

(d) each supplementary page is securely attached to the MR
Attachment 1 to Appendix 3

Note 1 See clause 5 of Appendix 3 for instructions on completing Part 1 of this maintenance release. *Note 2* A computer printout of required maintenance may be securely attached to Part 1 of this maintenance release.

Note 3 See clause 8 of Appendix 3 on attaching supplementary pages if there is insufficient space.

Maintenance Release A

This Maintenance Release has been issued by virtue of Regulation 43(7) of the Civil Aviation Regulations and except where it ceases to be in force by virtue of Regulation 43 or Regulation 17 of the Civil Aviation Regulations shall remain in force until the expiry date or aircraft time in service shown whichever is the earlier.

<table>
<thead>
<tr>
<th>Issued by</th>
<th>Aircraft total time in service at issue</th>
<th>Time</th>
<th>Date</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed</td>
<td>AME licence/authority no.</td>
<td>IFR</td>
<td>VFR Day</td>
<td></td>
</tr>
</tbody>
</table>

Operational Category

Maintenance requirements - The following maintenance, in addition to daily inspections, is required to be carried out on the aircraft during the period for which this Maintenance Release is expressed to remain in force, in order to comply with requirements or conditions imposed under the Civil Aviation Regulations.

Schedules/System of Maintenance applicable to this aircraft:

<table>
<thead>
<tr>
<th>Item no.</th>
<th>Maintenance required</th>
<th>Due date/ Aircraft TTIS</th>
<th>Complied with, entered & certified in Log Book or Part 2 of MR</th>
<th>Date</th>
<th>Item no.</th>
<th>Maintenance required</th>
<th>Due date/ Aircraft TTIS</th>
<th>Complied with, entered & certified in Log Book or Part 2 of MR</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Attachment 1 to Appendix 3

Note 1 See clause 6 of Appendix 3 for instructions on completing Part 2 of this maintenance release.

Note 2 See clause 8 of Appendix 3 on attaching supplementary pages if there is insufficient space.

<table>
<thead>
<tr>
<th>Item no.</th>
<th>Endorsements</th>
<th>Date, signature and licence no.</th>
<th>Item no.</th>
<th>Clearing endorsements</th>
<th>Clearing signature, licence/authority no. and date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A signature in Part 2 of this Maintenance Release certifying for the completion of maintenance shall constitute a certification required by Civil Aviation Regulation 422E.
Attachment 1 to Appendix 3

Note 1 See clause 7 of Appendix 3 for instructions on completing Part 3 of this maintenance release.

Note 2 See clause 8 of Appendix 3 on attaching supplementary pages if there is insufficient space.

A signature in Part 3 of this Maintenance Release certifying for the completion of maintenance shall constitute a certification required by Civil Aviation Regulation 422E.